White Axes, line labels and transparency in
Survival Curves

Calum Polwart

Background

I don’t know if I'm actually going to use the results of this yet, but having spent more time
than I'd hoped to trying to figure out how to do this, I thought I should document it. I'm
producing a survival curve using ggsurvplot, but I want to present them on a dark background.
That means I want to make my plot background transparent and make all the black stuff (lines,
text etc) white so that it has good contrast on the dark background. I've almost never seen
examples of this in the wild - either because in design terms someone says its a bad thing, /or/
its hard to do in R so people don’t try?

I've read enough data science blogs to know that having to move your eyes from a line to a
legend to work out which one is which is also considered bad, and so I'm also going to label my
lines.

Lets set up a basic plot

My plots have risk tables on them which makes life all the more ‘exciting’. We will start with
the official example plot - survival in the lung cancer data-set. I've made some tweaks to the
standard off the shelf plot to get us started.

require(survival)
require (survminer)
fit<- survfit(Surv(time, status) ~ sex, data = lung)

# Basic survival curves

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,
tables.height = 0.2
)

@® OO

@® Add a title

@ Change the colours for the two survival lines
@) Add a p-value annotation to the plot

(@ Add the risk table below the plot

(5 Set the risk table to be 20% of the plot height.


https://orcid.org/0000-0002-4774-6366
https://rpkgs.datanovia.com/survminer/reference/ggsurvplot.html

Polwart, C Transparent survival curves in R

The official example Survival Curve

Strata sex=1 == gex=2

1.00-

0.75-
P
5
©
O
o
o 0.50+
T
>
b
=}
7

0.25-

p = 0.0013
0.00-
0 250 500 750 1000
Time
Number at risk
% 138 62 20 7 2
& osex=21 90 53 21 3 0
0 250 500 750 1000
Time

Now to customise that plot theme

ggsurvplot works using ggplot and so you might expect that you can take its result and throw
a few theme() statements at it and magically make things look different. Of course if it was
that easy, I'd not be writing a blog about it! ggsurvplot knows this is an issue so it lets you
define the theme /within/ the call to the plot. The reason this strange approach is used, is
that ggsurvplot is actually creating two plots - the risk table is a plot as well.

So for simplicity, lets say I wanted to change the axis to be red and a bit thicker I can use this:

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,


https://rpkgs.datanovia.com/survminer/reference/ggsurvplot.html
https://rpkgs.datanovia.com/survminer/reference/ggsurvplot.html
https://rpkgs.datanovia.com/survminer/reference/ggsurvplot.html

Polwart, C Transparent survival curves in R

tables.height = 0.2,
ggtheme = theme( ®
axis.line = element line(colour = "red", linewidth=2),
axis.ticks = element line(colour = "red", linewidth = 1.5),
axis.ticks.length=unit(.25, "cm")

)

(1) Add a theme statement to change the axis.line to red, and the tick colour, width and length.

The official example Survival Curve

Strata sex=1 == sex=2

1.00

0.75

0.50

Survival probability

0.25

0.00

0 250 500 750 1000
Time

Number at risk

Strata

sex=2

0 250 500 750 1000
Time

This is all fairly well documented and straightforward so far. And we can add a transparent
background using the theme_ transparent() in the ggtheme statement.

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",



Polwart, C Transparent survival curves in R

palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,

tables.height = 0.2,

ggtheme = theme transparent() + ®
theme (
axis.line = element line(colour = "red", linewidth=2),
axis.ticks = element line(colour = "red", linewidth = 1.5),

axis.ticks.length=unit(.25, "cm")

)

(1 Add a theme transparent statement much like you would with ggplot2 normally, but within
the ggtheme statement.

If you’ve not already got dark mode enabled on the site, now might be a good time to enable it!



Polwart, C Transparent survival curves in R

You can use the slider at the top right of the screen. However, already there are a few things
that even then aren’t behaving as you might expect! The title has vanished. The tick-marks
(on the main plot) are in black not red and my decision to thicken the axis has suddenly made
the risk table axis really obvious. You can add a tables.theme statement as well which would
let you handle its axis differently. I'm also going to switch off the text labels with - tables.y.text
= FALSE.

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,
tables.height = 0.2,

tables.y.text = FALSE, @®
ggtheme = theme_transparent() +
theme( text = element text(colour = "yellow"), @
axis.line = element line(colour = "red", linewidth=2),
axis.ticks.x = element line(colour = "red", linewidth = 1.5
axis.ticks.y = element line(colour = "red", linewidth = 1.5),
axis.ticks.length=unit (.25, "cm"
),
tables.theme = theme cleantable() ®

)

(@ Removing the text labels just for tidiness

@ Make the text a different colour. When I'm experimenting with graphs like this I often use
a mix of horrible colours to check what I'm changing, then flip to my final colour I want
later.

@) Specify the axis ticks for x and y separately as they must be defined separately elsewhere
in the ggsurvplot theme :-(

(® Adding a different theme to the risk table



Polwart, C Transparent survival curves in R

Strata =+ sex=1

You will notice we still have black text on the p value and the risk numbers and that we are
still missing the title and the title on the risk table. The title is fairly easy to fix. The black
text for the p-value is however not so simple. These bits of text are actually geom_ text and the
colour is specified when they are placed rather than using a theme. ggsurvplot has provided a
method for the numbers at risk so we can use that.

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,

tables.height = 0.2,

tables.y.text = FALSE,

tables.col = "magenta", @®



Polwart, C Transparent survival curves in R

ggtheme = theme_ transparent() +

theme( text = element_text(colour = "yellow"),
plot.title = element_text(colour = "green", size = 30), @
plot.tag=element text(colour="orange"), ®
plot.subtitle = element_text(colour = "blue", size = 25]
axis.line = element line(colour = "red", linewidth=2),
axis.ticks.x = element line(colour = "red", linewidth = 1.5
axis.ticks.y = element_line(colour = "red", linewidth = 1.5),
axis.ticks.length=unit(.25, "cm"
)
tables.theme = theme cleantable()

)

(@ Use tables.col to specify the text colour, or alternatively you could use tables.col = “strata”
to get the line colours as the text colour.

(2 Specifying a plot title, and in this example a size will restore the title.

® If you are using a subtitle, or plot tags you will need to specify these too.



Polwart, C Transparent survival curves in R

Strata == sex=1

If you’d like the Number at Risk to be smaller and on the left we can add it as a theme to
tables.theme()

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,
tables.height = 0.2,
tables.y.text = FALSE,

tables.col = "magenta",
ggtheme = theme_transparent() +
theme( text = element_text(colour = "yellow"),
plot.title = element_text(colour = "green", size = 30),



Polwart, C Transparent survival curves in R

plot.tag=element text(colour="orange"),

plot.subtitle = element_text(colour = "blue", size = 25,
axis.line = element line(colour = "red", linewidth=2),
axis.ticks.x = element line(colour = "red", linewidth = 1.5
axis.ticks.y = element line(colour = "red", linewidth = 1.5),
axis.ticks.length=unit(.25, "cm")
),
tables.theme = theme cleantable() +
theme (
plot.title = element text(size = 20, hjust = 0 ) ®
)

)

@® Reduce the size and horizontally justify (left align) the title

Strata =+ sex=1




Polwart, C Transparent survival curves in R

Hacking the p-value colour

We’ve now done as much as we can achieve within ggsurvplot directly. So lets plot this all with
white instead of all these hideous colours. We will save this as an object so that we can hack
the p value colour.

par(bg = "#000000", fg = "#FFFFFF")

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,
tables.height = 0.2,
tables.y.text = FALSE,

tables.col = "white", @
ggtheme = theme_transparent() +
theme( text = element text(colour = "white"),

plot.title = element_ text(colour = "white", size = 30),
plot.tag=element_text(colour="white"),

plot.subtitle = element_ text(colour = "white", size
axis.line = element line(colour = "white", linewidth=2),
axis.ticks.x = element line(colour = "white", linewidth
axis.ticks.y = element line(colour = "white", linewidth = 1.5),
axis.ticks.length=unit (.25, "cm"
),
tables.theme = theme cleantable() +
theme (
plot.title = element text(size = 20, hjust = 0 )
)
) —> myPlot @)
print (myPlot) ®

@ Change all the colours to white
@ Save the plot to an object called myPlot
@) Use print to view the plot

10

2t



Polwart, C Transparent survival curves in R

The official example Survival Curve

Strata == sex=1 sex=2

0 250

Number at risk
138 62

90 53

If we now examine the structure of myPlot with summary(myPlot) we get:

summary (myPlot)

Length Class Mode
plot 11 gg list
table 11 gg list
data.survplot 10 data.frame list
data.survtable 10 data.frame list

Which tells us there is 4 parts to this object. Two data tables containing the data, and two gg
class objects (plots in essence) once called ‘plot” which has the survival curve, the other ‘table’
which has the risk table. Examining the plot will give us more information:

summary (myPlot$plot)

data: time, n.risk, n.event, n.censor, surv, std.err, upper, lower,
strata, sex [208x10]

11



Polwart, C Transparent survival curves in R

mapping: x = ~time, y = ~surv
scales: y, ymin, ymax, yend, yintercept, ymin_final, ymax_final, lower, middle, upper.
faceting: <ggproto object: Class FacetNull, Facet, gg>

compute_layout: function

draw_back: function

draw_front: function

draw_labels: function

draw_panels: function

finish_data: function

init_scales: function

map_data: function

params: list

setup_data: function

setup_params: function

shrink: TRUE

train_scales: function

vars: function

super: <ggproto object: Class FacetNull, Facet, gg>
mapping: colour = ~strata
geom_step: direction = hv, na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

mapping: x = ~X, y = ~y
geom_blank: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

mapping: colour = ~strata
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

mapping: X = ~X, y = ~y
geom_text: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity

This shows there are 4 parts to this particular plot (your plots may vary!). Importantly the 4th
part is geom_ text - this likely contains our p-value information. These sit in something called
a layer and we should look at the 4th Layer. We are interested in the aesthetics so we need to
look at the aes_params:

myPlot$plot$layers[[4]]$aes_params

$label
[1] "p = 0.0013"

$size
[1] 5

12



Polwart, C Transparent survival curves in R

$hjust
(11 0

$family
[1] nn

This confirms we are looking that p-value and shows that no colour has been specified. Adding
a colour is as easy as:

myPlot$plot$layers[[4]]$aes_params$colour <- "red"
print (myPlot)

The official example Survival Curve

Strata =+ sex=1 sex=2

0 250

Number at risk

138 62

90 53

Labelling the line instead of a legend

I also wanted to edit the legend to annotate those alongside my lines rather than at the top of
the window as a legend. We should therefore return to our ggsurvplot command to disable the
legend:

13



Polwart, C Transparent survival curves in R

ggsurvplot (
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,
legend = "none", @

risk.table = TRUE,
tables.height = 0.2,
tables.y.text = FALSE,
tables.col = "white",
ggtheme = theme_transparent() +
theme ( text = element text(colour = "white"),
plot.title = element_text(colour = "white", size = 30),
plot.tag=element_text(colour="white"),

plot.subtitle = element_text(colour = "white", size
axis.line = element line(colour = "white", linewidth=2),
axis.ticks.x = element line(colour = "white", linewidth
axis.ticks.y = element line(colour = "white", linewidth = 1.5),
axis.ticks.length=unit(.25, "cm"
),
tables.theme = theme cleantable() +
theme (
plot.title = element_text(size = 20, hjust = 0 )
)
) —=> myPlot
myPlot$plot$layers[[4]]$aes_params$colour <- "white" ®
print (myPlot)

@ Disable the legend
(2 Update the p-value colour

14



Polwart, C Transparent survival curves in R

The official example Survival Curve

p = 0.0013

0 250

Number at risk
138 62

90 53

As myPlot$plot contains the survival curve we can use ggannotate to, erm, annotate it! Strata
are ordered in the order of the factor for their grouping. So in our example at the very start
we created a survival object with:

fit<- survfit(Surv(time, status) ~ sex, data = lung)

and ‘sex’ is where the strata comes from. Unhelpfully they are coded as sex = 1 or 2. I gather
that the correct allocation is 1 = Male and 2 = Female. It would probably be better to fix this
before we create the survival object. So lets go back and do that:

require(forcats) ®

lung$sex |>
as.character() |[>
fct_recode ( "Male" = "1", "Female" = "2") -> lung$sex

©@ ®

fit<- survfit(Surv(time, status) ~ sex, data = lung)

15



Polwart, C Transparent survival curves in R

ggsurvplot ( ®
fit,
data = lung,
title = "The official example Survival Curve",
palette = c("#E7B800", "#2E9FDF"),
pval = TRUE,

risk.table = TRUE,
tables.height = 0.2,
tables.y.text = FALSE
)

@ I prefer to use tidyverse forcats package for factors, but you could use base R to achieve the
same

@ The data is currently stored as a number and not a factor. forcats can’t process a number
it needs a character or factor so lets make it a character

@ Re-code the data and save it back into the lung$sex data column. You could of course save
it elsewhere and use that if you didn’t want to affect the source data

@ Refit the data with the coded values

() Re run the graph, I've used a shortened version here with the legend re-enabled to show
which is which for colours - yellow is male and blue is female

16



Polwart, C Transparent survival curves in R

The official example Survival Curve

Strata sex=Male === sex=Female

1.001

0.75-
P
5
3]
O
o
o 0.50+
©
=
Z
=}
N

0.251

p = 0.0013
0.00-
0 250 500 750 1000
Time
Number at risk
% 138 62 20 7 2
&= 90 53 21 3 0
0 250 500 750 1000
Time

To annotate the graphs we will need to know:

e Where we want the labels to be
e The label colours
e The label names

The label colours is ‘easy’ we are already defining that with the line palette = c¢(“A#E7B800”,
“#2F9FDFE”) in the plot and it would be sensible to use labels of the same colour as the line.

The label names is also ‘easy’ as we simply need to take the factor levels. These will be applied
to the colours in order. So the first factor gets #E7B800 as a colour.

Positioning by code is harder. You may simply decide to do it using some hard entered numbers
of the co-ordinates you want to use. But I thought this little bit of code might work:

line colours = c("#E7B800", "#2E9FDF") ®
label names = levels(lung$sex) @

17



Polwart, C

Transparent survival curves in R

# Get the lower line name

lower line <- surv_median(fit)$stratal[surv_median(fit)$median == min(surv_median(fit) $me

upper_line <- surv_median(fit)$stratalsurv_median(fit)$median

# establish 75% of x-axis
sum_fit <- summary(fit)
x75 <- max(sum_fit$time, na.rm=T) * 0.75

# get the lower line level at 75% of the way
lower_line_y <- sum_fit$surv[sum fit$time >=

# get the upper line level at 75% of the way
upper_line y <- sum_fit$surv[sum fit$time >=

along the line
X75 & sum_fit$strata ==

along the line
X75 & sum_fit$strata ==

# annotate the lower line with the right hand to corner of the label

myPlot$plot <- myPlot$plot + annotate(
"text",
x= X75,
y = lower_line_y,

label= label names[surv median(fit)$strata ==lower_ line],
colour=line_colours[surv_median(fit)$strata ==lower_line],

hjust = 1,
vjust = 1
)

# annotate the upper line above the line

myPlot$plot <- myPlot$plot + annotate(
”teXt“,
x= X75,
y = upper_line_y,

label= label names[surv_median(fit)$strata ==upper_line],
colour=line_colours[surv_median(fit)$strata ==upper_line],

hjust = 0,
vjust = -2
)

print (myPlot)

(» define the line colours as a vector

@ define the label names for the graph

3 establish where to plot the annotations
(@ plot the annotations

max (surv_median(fit) $me

lower line] [1]

upper_line] [1]
at 75% & lower_lin

0

18



Polwart, C Transparent survival curves in R

The official example Survival Curve

p = 0.0013

0 250

Number at risk
138 62

90 53

For completeness - we can create this all as a single piece of code, and we will replace the line
colouration inf the ggsurvplot function so that it couldn’t be swapped around in error.

require(survival)
require (survminer)
require(forcats)
data(lung) ®
lung$sex |[>
as.character() |[>
fct_recode ( "Male" = "1", "Female" = "2") -> lung$sex

fit<- survfit(Surv(time, status) ~ sex, data = lung)

line_colours = c("#E7B800", "#2E9FDF")

19



Polwart, C

Transparent survival curves in R

label names = levels(lung$se
ggsurvplot (

fit,

data = lung,

title = "The official ex

X)

ample Survival Curve",

palette = line_colours, ®)
pval = TRUE,
legend = "none",
risk.table = TRUE,
tables.height = 0.2,
tables.y.text = FALSE,
tables.col = "white",
ggtheme = theme_transparent() +
theme( text = element text(colour = "white"),
plot.title = element_text(colour = "white", size = 30),
plot.tag=element_text(colour="white"),
plot.subtitle = element_text(colour = "white", size = 2!
axis.line = element line(colour = "white", linewidth=2),
axis.ticks.x = element line(colour = "white", linewidth = 1
axis.title.x = element_text(colour = "white", hjust=1), ®

axis.title.y
axis.ticks.y

s
tables.theme = theme cle
theme (
plot.title =
)
) —> myPlot

# change the p-value colour

element text(colour
element line(colour

"white", hjust=1),
"white", linewidth = 1.5),

axis.ticks.length=unit(.25, "cm"

antable() +

element text(size =

20, hjust =

myPlot$plot$layers[[4]]$aes_params$colour <- "white"

# Get the lower line name

lower line <- surv_median(fit)$stratal[surv_median(fit)$median
upper_line <- surv_median(fit)$stratalsurv_median(fit)$median

# establish 75% of x-axis
sum_fit <- summary(fit)
X75 <- max(sum_fit$time, na.

rm=T) * 0.75

0)

min(surv_median(fit) $me
max (surv_median(fit) $me

# get the lower line level at 75} of the way along the line

lower_line_y <- sum_fit$surv

[sum_fit$time >=

x75 & sum_fit$strata

lower line] [1]

# get the upper line level at 75% of the way along the line

upper_line y <- sum_fit$surv

# annotate the lower line with the right hand to corner of the label

[sum_fit$time >=

x75 & sum_fit$strata

== upper_line] [1]

at 75% & lower_line

20



Polwart, C

Transparent survival curves in R

myPlot$plot <- myPlot$plot + annotate(

"text",

x= X75,

y = lower_line y,

label= label names[surv _median(fit)$strata ==lower_line],
colour=line colours[surv median(fit)$strata ==lower line],

hjust = 1,
vjust = 1
)

# annotate the upper line above the line

myPlot$plot <- myPlot$plot + annotate(

"text",

x= X75,

y = upper_line vy,

label= label names[surv_median(fit)$strata ==upper_line],

colour=line_colours[surv_median(fit)$strata ==upper_line],

hjust = 0,
vjust = -2 # this is a bit unpredictable
)

print (myPlot)

(@ reload the lung data-set as we’ve been messing with it
(2 insert the line colour vector
@ expose the axis labels which I missed earlier!

21



Polwart, C Transparent survival curves in R

The official example Survival Curve

2
=
©
Q
O
P
s
IS
2
>
S
>
n

Female

p = 0.0013

250

Number at risk
90 53

62

Finally, if we want to save the plot as a vector or png, we need to tell ggsave not to apply a
background colour!

ggsave ("myPlot.png", bg="transparent")
grateful::cite_packages(output = "paragraph", out.dir = ".")

We used R version 4.3.01) and the following R packages: cowplot v. 1.1.3%, DT v. 0.338%, glue
v. 1.8.014, knitr v. 1.500°7 gicharts2 v. 0.7.518), rmarkdown v. 2.2919 1 survival v. 3.8.3[12:13],
survminer v. 0.5.01"%, tidyverse v. 2.0.0!'5).

References

1. R Core Team. (2023). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. https://www.R-project.org/

2. Wilke, C. O. (2024). cowplot: Streamlined plot theme and plot annotations for “ggplot2”.
https://CRAN.R-project.org/package=cowplot

22


https://www.R-project.org/
https://CRAN.R-project.org/package=cowplot

Polwart, C Transparent survival curves in R

3. Xie, Y., Cheng, J., & Tan, X. (2024). DT: A wrapper of the JavaScript library “DataTables”.

ot

https://CRAN.R-project.org/package=DT
Hester, J., & Bryan, J. (2024). glue: Interpreted string literals. https://CRAN.R-project.
org/package=glue

. Xie, Y. (2014). knitr: A comprehensive tool for reproducible research in R. In V. Stodden, F.

Leisch, & R. D. Peng (Eds.), Implementing reproducible computational research. Chapman;
Hall/CRC.

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman; Hall/CRC.
https://yihui.org/knitr/

Xie, Y. (2025). knitr: A general-purpose package for dynamic report generation in R.
https://yihui.org/knitr/

Anhoej, J. (2024). qicharts2: Quality improvement charts. https://CRAN.R-project.org/
package=qicharts2

9. Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide. Chap-

10.

11.

12.

13.

14.

15.

man; Hall/CRC. https://bookdown.org/yihui/rmarkdown

Xie, Y., Dervieux, C., & Riederer, E. (2020). R markdown cookbook. Chapman; Hall/CRC.
https://bookdown.org/yihui/rmarkdown-cookbook

Allaire, J., Xie, Y., Dervieux, C., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wick-
ham, H., Cheng, J., Chang, W., & Tannone, R. (2024). rmarkdown: Dynamic documents
for r. https://github.com /rstudio/rmarkdown

Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data: Extending
the Cox model. Springer.

Therneau, T. M. (2024). A package for survival analysis in r. https://CRAN.R-project.
org/package=survival

Kassambara, A., Kosinski, M., & Biecek, P. (2024). survminer: Drawing survival curves
using “ggplot2”. https://CRAN.R-project.org/package=survminer

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., Frangois, R., Grole-
mund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache,
S. M., Miiller, K., Ooms, J., Robinson, D., Seidel, D. P.; Spinu, V., .. Yutani, H. (2019).
Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/
10.21105/joss.01686

23


https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=glue
https://CRAN.R-project.org/package=glue
https://yihui.org/knitr/
https://yihui.org/knitr/
https://CRAN.R-project.org/package=qicharts2
https://CRAN.R-project.org/package=qicharts2
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://github.com/rstudio/rmarkdown
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686

	Background
	Lets set up a basic plot
	Now to customise that plot theme
	Hacking the p-value colour
	Labelling the line instead of a legend
	References

